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The American National Standards Institute does not develop standards and will in no circumstances give an
interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue
an interpretation of an American National Standard in the name of the American National Standards Institute.
Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title
page of this standard.
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Introduction

NOTE The user's attention is called to the possibility that compliance with this standard may require use of an invention
covered by patent rights.

By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection
therewith. The patent holder has, however, filed a statement of willingness to grant a license under these rights on reasonable
and nondiscriminatory terms and conditions to applicants desiring to obtain such a license. Details may be obtained from the
standards developer.

Suggestions for the improvement or revision of this Standard are welcome. They should be sent to the X9
Committee Secretariat, Accredited Standards Committee X9, Inc., Financial Industry Standards, P.O. Box 4035,
Annapolis, MD 21403 USA.

This Standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on
Financial Services, X9. Committee approval of the Standard does not necessarily imply that all the committee
members voted for its approval.

The X9 committee had the following members:
Gene Kathol, X9 Chairman

Vincent DeSantis, X9 Vice-Chairman

Cynthia Fuller, Executive Director

Isabel Bailey, Managing Director

Organization Represented Representative
ACI Worldwide Jim Shaffer
American Bankers Association C. Diane Poole
American Express Company Mike Jones
American Financial Services Association Mark Zalewski
Bank of America Daniel Welch
Capital One Scott Sykes
Certicom Corporation Daniel Brown
Citigroup, Inc. Daniel Schutzer
Deluxe Corporation John Fitzpatrick
Diebold, Inc. Bruce Chapa
Discover Financial Services Jennifer Schroeder
Federal Reserve Bank Dexter Holt

First Data Corporation Gene Kathol
Fiserv Bud Beattie
Hewlett Packard Larry Hines
Hypercom Scott Spiker

IBM Corporation Todd Arnold
Ingenico John Sheets
Intuit, Inc. Jana Hocker

J.P. Morgan Chase & Co Jacqueline Pagan
KPMG LLP Alfred F. Van Ranst
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MagTek, Inc. Carlos Morales
MasterCard International William Poletti
Ntl. Association of Convenience Stores Teri Richman
National Security Agency Sheila Brand
NCR Corporation David Norris
SWIFT/Pan Americas Malene McMahon

Vincent DeSantis
David J. Concannon

The Clearing House
Unisys Corporation

University Bank Stephen Ranzini
VeriFone, Inc. Brad McGuinness
VECTORSsgi Ron Schultz
VISA Richard Sweeney
Wachovia Bank Ray Gatland
Wells Fargo Bank Ruven Schwartz

The X9F subcommittee on Data and Information Security had the following members:

Richard J. Sweeney, Chairman

Organization Represented Representative
3PEA Technologies, Inc. Mark Newcomer
ACI Worldwide Jim Shaffer
American Bankers Association C. Diane Poole
American Express Company Mike Jones
American Financial Services Association Mark Zalewski
Bank of America Mack Hicks
Capital One Scott Sykes
Certicom Corporation Daniel Brown
Citigroup, Inc. Paul Gubiotti

Deluxe Corporation

DelLap, White, Caldwell and Croy, LLP
Diebold, Inc.

Entrust, Inc.

Federal Reserve Bank

Ferris and Associates, Inc.

Fidelity Investments

First Data Corporation

First National Bank of Nebraska, Inc.
Fiserv

Futurex

Hewlett Packard

Hypercom

IBM Corporation

|dentrus

InfoGard Laboratories

Ingenico

J.P. Morgan Chase & Co

KPMG LLP

John Fitzpatrick
Darlene Kargel
Bruce Chapa
Robert Zuccherato
Neil Hersch

J. Martin Ferris
Michael Versace
Gene Kathol

Lisa Curry

Bud Beattie

Jason Anderson
Larry Hines

Scott Spiker

Todd Arnold
Brandon Brown
Tom Caddy

John Sheets
Edward Koslow
Alfred F. Van Ranst
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MagTek, Inc.
MasterCard International
Microsoft Corp

Ntl. Association of Convenience Stores
National Inst. of Stds and Technology
National Security Agency

NCR Corporation

NTRU Cryptosystems, Inc.

Orion Security Solutions

Pi R Squared Consulting LLP

Pitney Bowes, Inc.
Proofspace

RSA Security, Inc.
Surety, Inc.

TECSEC Incorporated
Thales e-Security, Inc.

Triton Systems of Delaware, Inc.

University Bank
VeriFone, Inc.
VECTORSsqgi
VISA

Wachovia Bank
Wells Fargo Bank

Under ASC X9 procedures, a working group may be established to address specific segments of work under the
ASC X9 Committee or one of its subcommittees. A working group exists only to develop standard(s) or
guideline(s) in a specific area and is then disbanded. The individual experts are listed with their affiliated
organizations. However, this does not imply that the organization has approved the content of the standard or
guideline. (Note: Per X9 policy, company names of non-member participants are listed only if, at time of
publication, the X9 Secretariat received an original signed release permitting such company names to appear in

print.)

The X9F1 Cryptographic Tool Standards and Guidelines group that developed this standard had the following

members:

Miles Smid, Chairman

James Randall, Project Editor

Organization Represented

Certicom Corporation

Terry Benson
Ron Karlin

Niels Ferguson
Teri Richman
Elaine Barker
Sheila Brand
David Norris
William Whyte
Miles Smid
Ralph Poore
Leon Pintsov
Paul F. Doyle
James Randall
Dimitrios Andivahis
Ed Scheidt
James Torjussen
Daryll Cordeiro
Stephen Ranzini
Dave Faoro
Ron Schultz
Richard Sweeney
Ray Gatland
Ruven Schwartz

Representative
Dan Brown

Scott Vanstone
Simon Blake-Wilson

Communications Security Establishment of Canada Mike Chawrun
Entrust Don Johnson
Robert Zuccherato
HP Susan Langford
IBM Corporation Alan Roginsky
Microsoft Niels Furguson
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National Institute of Standards and Technology Morris Dworkin
Elaine Barker
John Kelsey
National Security Agency Paul Timmel
Michael Boyle
NTRU William Whyte
ORION Miles Smid
Pi R Squared Ralph Poore
Pitney Bowes, Inc Matt Compagna
RSA Security James Randall
Burt Kaliski

Steve Schmalz

Business practice has changed with the introduction of computer-based technologies. The substitution of
electronic transactions for their paper-based predecessors has reduced costs and improved efficiency. Trillions of
dollars in funds and securities are transferred daily by telephone, wire services, and other electronic
communication mechanisms. The high value or sheer volume of such transactions within an open environment
exposes the financial community and its customers to potentially severe risks from accidental or deliberate
alteration, substitution, or destruction of data. This risk is compounded by interconnected networks, and the
increased number and sophistication of malicious adversaries.

Some of the conventional “due care” controls used with paper-based transactions are unavailable in electronic
transactions. Examples of such controls are safety paper, which protects integrity, and hand-written signatures or
embossed seals, which indicate the intent of the originator to be legally bound. In an electronic-based
environment, controls must be in place that provide the same degree of assurance and certainty as in a paper
environment. The financial community is responding to these needs.

The Accredited Standards Committee on Financial Services (ANSI X9) has developed several sets of standards
based on public key cryptography to protect financial information:

X9.30-1996, Public Key Cryptography Using Irreversible Algorithms for the Financial Services Industry contains

Part 1: The Digital Signature Algorithm (DSA) and
Part 2: The Secure Hash Algorithm -1 (SHA-1).

o X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry
(rDSA)

o X9.42-2000, Public Key Cryptography for the Financial Services Industry — Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography

o X9.62-1998, Public Key Cryptography for the Financial Services Industry - The Elliptic Curve Digital Signature
Algorithm (ECDSA)

e X9.63-2002, Public Key Cryptography for the Financial Services Industry — Key Agreement and Transport Using
Elliptic Curve Cryptography

This Standard, Prime Number Generation, Primality Testing, and Primality Certificates, defines techniques for
generating prime numbers that are needed as parameters in public key algorithms.

The use of this Standard, together with appropriate controls, may have considerable legal effect with respect to the
apportionment of liability for erroneous or fraudulent transactions and the satisfaction of requirements for transaction
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enforceability. The legal implications associated with the use of this Standard may have their origin in both case law
and legislation, including the Uniform Commercial Code Article 4A on Funds Transfers (Article 4A).

The details of Article 4A address (in part) the implementation of commercially reasonable security procedures and the
effect of using such procedures on the apportionment of liability between a customer and a bank. A security
procedure is used by Article 4A-201 "for the purpose of (i) verifying that a payment order is that of the customer, or (ii)
detecting error in the transmission or the content of the payment order or communication." The commercial
reasonableness of a security procedure is determined by the criteria established in Article 4A-201.

LT 1
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Prime Number Generation, Primality Testing, and
Primality Certificates

1 Scope

In the current state of the art in public key cryptography, all methods require, in one way or another, the use of
prime numbers as parameters to the various algorithms. This document presents a set of accepted techniques for
generating primes.

It is intended that ASC X9 standards that require the use of primes will refer to this document, rather than trying to
define these techniques on a case-by-case basis. Standards, as they exist today, may differ in the methods they
use for parameter generation from those specified in this document. It is anticipated that as each existing ASC X9
standard comes up for its 5-year review, it will be modified to reference this document instead of specifying its
own techniques for generating primes.

This standard defines methods for generating large prime numbers as needed by public key cryptographic algorithms.
It also provides testing methods for testing candidate primes presented by a third party.

This standard allows primes to be generated either deterministically or probabilistically, where:

— A number shall be accepted as prime when a probabllistic algorithm that declares it to be prime is in error with

probability less than 27'%.

— A deterministic prime shall be generated using a method that guarantees that it is prime.

In addition to algorithms for generating primes, this standard also presents primality certificates for some of the
algorithms where it is feasible to do so. The syntax for such certificates is beyond the scope of this document.
Primality certificates are never required by this standard. Primality certificates are not needed when a prime is
generated and kept in a secure environment that is managed by the party that generated the prime.

A requirement placed upon the use of this standard, but out of scope, is as follows:

— When a random or pseudo-random number generator is used to generate prime numbers, an ANSI
approved random number (or bit) generator (i.e., one that is specified in an ANSI| X9 standard) shall be
used. This requirement is necessary to ensure security.

NOTE—The 2% failure probability is selected to be sufficiently small that errors are extremely unlikely ever to occur in normal
practice. Moreover, even if an error were to occur when one party tests a prime, subsequent tests by the same or other parties
would detect the error with overwhelming probability. Furthermore, the 2710 probability is an upper bound on the worst-case
probability that a test declares any non-prime candidate to be prime; not all non-primes may reach this bound, and the
probability that a non-prime generated at random passes such a test is much lower. Accordingly, the 2 "% hound is considered
appropriate independent of the size of the prime being generated and the intended security level of the cryptosystem in which
the prime is to be employed. For high-assurance applications, however, the deterministic methods may nevertheless be
preferable.
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2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. Nevertheless, parties to agreements based on this document are encouraged to
consider applying the most recent edition of the referenced documents indicated below. For undated references,
the latest edition of the referenced document (including any amendments) applies.

X9.62-1998, Public Key Cryptography for the Financial Services Industry — The Elliptic Curve Digital Signature
Algorithm (ECDSA)".

X9.63-2002, Public Key Cryptography for the Financial Services Industry — Key Agreement and Transport Using
Elliptic Curve Cryptography

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1
Composite
An integer that has at least two prime factors (two or more may be identical).

3.2
ECPP
Acronym for Elliptic Curve Primality Proving algorithm.

3.3

m-bit number

A positive integer whose binary representation consists of m bits, where the high order bit, by definition, is always a
“1”. In the case of an m-bit prime number, the low order bit is also a “1" except for the 2-bit prime number decimal 2,
which has the binary value b’10'.

For example, the two-byte hexadecimal prime number X 01FD’ (decimal 509) is the 9-bit prime number b'111111101".

3.4
Lehmer-Kraitchik Algorithm
A deterministic algorithm that may be used to rigorously prove the primality of an integer.

3.5

Lucas Probable Prime’

An integer that has been declared to be a prime number after applying the Lucas test. This number may, however,
actually be composite with low probability.

3.6

Miller-Rabin Probable Prime

An integer that has been declared to be a prime number after applying the Miller-Rabin (M-R) test. This number may,
however, actually be composite with low probability.

3.7
Monic Polynomial
A polynomial whose lead coefficient is 1.

1 Formerly called “Lucas-Lehmer Probable Prime” in ANS X9.80-2001.
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3.8
Polynomial Discriminant
The squared product of the pairwise difference of roots of the polynomial.

3.9

Prime Certificate

A certificate containing a small set of numbers associated with an integer that can be used to rigorously prove that the
integer is prime. Certificates can be independently checked by other software.

3.10
Prime Number
An integer that is greater than 1, and divisible only by 1 and itself.

3.11
Primitive Root
An integer a is a primitive root with respect to a prime p if the smallest integer value of x, such that a* =1 (mod p), is

x=p-1.

3.12
Private Key
In an asymmetric (public) key cryptosystem, that key of an entity's key pair which is known only by that entity.

3.13
Probable Prime
An integer that has been declared prime via a probabilistic method.

3.14

Pseudo-Random Number

A single number taken as a sample from a sequence of numbers produced by a pseudo-random number
generator.

3.15
Public Key
In an asymmetric key system, that key of an entity’s key pair which may be publicly known.

3.16

Public-Key Cryptography

An asymmetric cryptographic algorithm that uses two related keys, a public key and a private key; the two keys have
the property that, given the public key, it is computationally infeasible to derive the private key.

3.17

Sharp Estimate

An estimate for a variable or mathematical quantity is said to be sharp when the estimate is close to the true value of
the quantity being estimated.

3.18
Sieve
A computation technique that identifies integers in an arithmetic progression that have small prime factors.

3.19

Trial Division

A procedure whereby an integer is tested to see if it is divisible by small primes by performing the actual division and
seeing if the remainder is zero.
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3.20

Uniform Random Variable

A real number x, lying within a pre-specified interval [a, b] such that the probability that x lies in a sub-interval [c, d]
with ¢ 2 a and d < b is equal to (d—c)/b-a).

4 Symbols and abbreviated terms

4.1
L x]
Floor function of x; the largest integer < x. For example, | 5.3 1= 5, and| —1.5]=-2.

4.2
[ x|
Ceiling function of x; the smallest integer > x. For example,| 5.3 |1=6 and| —1.5 |=—1.

4.3
VX

Square root of x.

4.4

(o

Jacobi symbol of a with respect to n. See Annex A.2.

4.5
ab

Evenly divides; e.qg. a divides b evenly (with no remainder).

4.6

.I.
Addition.

4.7

Congruence. A = B (mod C) means that (A-B) is divisible by C.

4.8
a‘b
Exponentiation. a raised to the b " power.

4.9
Multiplication.

4.10
| x|
Absolute value of x: | x| is —x if x < 0; otherwise, it is simply x.

4.11

[a,b]
The set of real numbers from a to b inclusive.

Copyright Ameﬂnan Mational Standards Institute @ASC Kg: “'I'E. EDGE - A” rlghtﬁ rese WEd

Pravidad by IHS under licansa with AMSI
Mo reproduction or natwarking parmitiad withoul licansa fram IHS Mot tar Rasala



ANS X9.80-2005

412
b'0T’
An example of binary notation used to represent one or more bits.

413
CRT
Chinese Remainder Theorem.

414
GCD (a, b)
Greatest common divisor of integers a and b.

415
LCM (a, b)
Least common multiple of integers a and b.

4.16
mod
Modulo.

417
modulo n
Arithmetic modulo n.

4.18
m, n, a
Any positive integer that may or may not be prime.

419
P q

Prime numbers.
NMOTES

1. All integers (and all strings of bits or bytes) are written with the most significant digit (or bit or byte) in the left position.

2. Numbers represented by powers of 2, e.g. 2%, are x + 1 bit numbers.

5 Prime Generation Methods

5.1 General Discussion
This section discusses prime generation by a first party; i.e. generation of primes by the user of said primes.

Prime numbers may be generated by a variety of methods. The methods are categorized into two groups. The
first group generates candidate integers at random and then tests them for primality using either a probabilistic or
deterministic algorithm. These methods are discussed in Section 5.2. The second set of methods actually
constructs integers from smaller integers in such a way that the constructed integer is guaranteed to be prime.
These methods are discussed in Section 5.3.

Section 5.4 discusses how to generate primes subject to side conditions. A typical side condition might be that a
prime p must have p—1 divisible by a large prime factor. ANSI X9.31 requires, for example, that p—1 must have a
prime factor of at least 100 bits.
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The algorithms approved by this standard include the following:
1. Testing of Randomly Chosen Integers
1A. Probabilistic Methods for Testing Integers

— Miller-Rabin, Section 5.2.3.1

Lucas, Section 5.2.3.2

—  Frobenius-Grantham, Section 5.2.3.3
1B. Deterministic Methods for Testing Integers

—  Tral division (for sufficiently small primes, e.g. up to 10 decimal digits), Section 5.2.4.1.1
—  The Selfridge extensions to PPL (Proth, Pocklington, & Lehmer), Section 5.2.4.1.2
—  Kraitchik-Lehmer, Section 5.2.4.1.3
—  ECPP (Elliptic Curve Primality Proof), Section 5.2.4.2

2. Methods for Direct Construction of Prime Numbers
—  Maurer’s Algorithm, Section 5.3.1
—  Shawe-Taylor’s Algorithm, Section 5.3.2

A method for generating random primes over an interval [a, b] that gives an equal probability of selecting each
prime, is simply to generate a random integer in [a, b], then test it for primality. If it is not prime, then continue
generating random integers and testing them until a prime is found. This method is much too slow to be of
practical use, but it is allowed by this standard. Instead, a method is given in Section 5.2.1 that selects primes
almost uniformly at random, but is significantly faster than the method suggested above.

Candidate primes can be tested for primality using either a probabilistic or a deterministic algorithm. The
difference between these two is that a deterministic algorithm takes a candidate integer and proves whether the
candidate is prime, whereas a probabilistic algorithm only declares that the candidate is probably prime. For each
invocation of the algorithm, there is a small probability that it will erroneously declare a composite integer to be
prime. For this reason, probabilistic algorithms are run more than once in order to ensure that the probability of

error is sufficiently small. This standard defines that probability to be 2%,

This standard allows three different probabilistic procedures to be used. The first is to use at least 50 rounds of
the Miller-Rabin algorithm (see Section 5.2.3.1). The second is using multiple rounds of the Miller-Rabin algorithm
followed by a single round of the Lucas algorithm (see Section 5.2.3.2). Composite integers that fool multiple
rounds of Miller-Rabin are known to exist. However, there is no known composite integer that passes even a
single Miller-Rabin test to the base 2 followed by a single Lucas test. This combination was suggested by
Pomerance, Selfridge and Wagstaff [11]. While heuristics suggest that such integers do exist, they must be
exceedingly rare, and no example is known. Indeed, a prize offered in [11] for such a composite remains
unclaimed. In previous X9 standards, only the use of multiple rounds of Miller-Rabin was specified as an
acceptable method. However, including a single follow-up round of Lucas lowers the probability of error
dramatically. The number of rounds required for Miller-Rabin used in conjunction with Lucas is given in Table 2
(Section 7). This second method is expected to have better performance than the first, but is more complex and
takes more code.
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The third probabilistic procedure is due to Grantham [6]. It is slightly more complicated to code than Miller-Rabin
and Lucas. Each iteration takes about 3 times as long, but it has the advantage that the probability of failure for
each iteration of Frobenius-Grantham (see Section 5.2.3.3) is considerably lower than a single iteration of Miller-
Rabin. The number of rounds required for Frobenius-Grantham is given in Table 3 (Section 7). At the time of
publication of this standard, unlike for Miller-Rabin, there is no known mathematical method for constructing
integers that achieve the worst-case probability of error for this test.

Damgaard, Landrock, and Pomerance [5] provide upper bounds on the probability of a failure of multiple rounds
of Miller-Rabin based upon the size of the number being tested, assuming that the candidate was randomly
chosen. These results are given in Table 2. Similar results have yet to be computed for the Frobenius-Grantham
method. However, based upon the probability of a single iteration failing (which can be derived from [6]), along
with the upper bound per iteration probability of failure, a crude upper bound table for the number of required
rounds of Frobenius-Grantham can be constructed. This is provided in Table 3. It is not a sharp estimate in the
sense that the actual probabilities of failure are much lower than given by the table. When the results of [5] are
extended to the Frobenius-Grantham method, Table 3 can be revised.

5.2 Generation of Primes Using Random Integers

5.2.1 Generation of Random Primes with Sequential Search

To generate a prime in the interval [a,b], first generate an integer x uniformly at random in this interval. Then,
apply a sieve procedure (Annex A.3) to the sequence of integers x, x + 1, x +2, x+3,x+4, ... x+ kfork=[ 5"
log(b) | where log is the natural log. The probability that any given integer in this sequence is prime is approximately :
1/log(b), so selecting an interval whose length is 5 - log(b) should be sufficient to find a prime. If no prime is found,
then increase the value of k. In the very rare event that x+k is outside the desired range, discard x and start over.

The sieve procedure removes all integers in the sequence that are divisible by small primes and hence cannot be
prime. Then, remaining integers are incrementally tested with a prime- testing algorithm.

Because this is an incremental search procedure and because the gaps between prime numbers are not uniformly
distributed, this method does not select all primes in the interval [a,b] with equal probability. For example, there exist
many prime pairs, integers p and p + 2, that are both prime. Searching incrementally from the random starting point x
as outlined above is more likely to select the prime p than the prime p + 2 (Annex B.2). As stated in 5.1, an alternative
method is to randomly choose from among the integers that survive the sieve as candidates for testing

The following algorithm accomplishes the sequential search technique described above. In step 2 two different
interval options are provided. {[{\ﬁ ](2‘:' ) (2"'- 1)] is included to ensure support for legacy systems)

1. Determine the size d, in bits, of the prime to be generated.

2. Select an integer x at random from the interval [2°, (2°= 1)]. or from the interval [(\/2 )(2° "), (2°- 1)].
3. Apply the sieve procedure from Annex A.3 with Yo = x,and J=5 - log x.

4. For each successive integer starting at x that survives the sieve, or for a randomly chosen integer that survives
the sieve, test it for primality by:
(4a) Applying at least 50 rounds of the Miller-Rabin test.
or

(4b) Applying an appropriate number of rounds of the Miller-Rabin algorithm as specified by Table 2,
followed by a single Lucas test;

or
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(4c) Applying an appropriate number of rounds of the Frobenius-Grantham algorithm as specified by Table
3;

or
(4d) Applying the methods of Section 5.2.4.1 (if the number is small enough; typically at most 150 bits);
or

(4e) Applying the ECPP method as described in Section 5.2.4.2.

If the number is declared prime, STOP. Otherwise repeat Step 4. If no primes have been found, lengthen the

sieve interval by increasing J and then repeat Step 3. J should be increased by at least log x and at most 5

log x each time. The exact amount of the increase is not critical. In the very rare event that candidate prime is

outside the desired range, start over

Note: The choice of the actual testing method used is left to the implementer. Only one testing method is required
Example. Take d = 32. x is chosen randomly as 3439601168. Sieving with primes less than 30 between x and x +
40 leaves the following survivors: x + 15, x + 21, x + 29, x + 33, and x + 35. All other numbers are divisible by a
prime less than 30. Testing the survivors with Miller-Rabin reveals that x + 29 = 3439601197 is probably prime.

This is the first prime greater than x. This can also be confirmed by trial division with all primes up to 58649 (see
5.2.4.1.1).

5.2.2 Generation of Random Primes with Uniform Distribution
As an alternative to the incremental search procedure given above, one may also do the following:

1. Determine the size d, in bits, of the prime to be generated.

2. Select an odd integer x at random from the interval [2° ", (2~ 1] or from the interval [\[2 )(2* "), (2°- 1)].

3. Test x for primality using any method approved by this standard. If x is not prime, then go to Step 2. If x is prime,
then STOP.

NOTE  The probability that a randomly chosen integer near x is prime is about 1/log x. Therefore, Step 2 will select about
(log x)/2 candidates on average, before a prime is found.

5.2.3 Testing Using Probabilistic Methods

5.2.3.1 Miller-Rabin?
The Miller-Rabin algorithm to test a candidate p is as follows:
1. Select an integer a uniformly at random from [2, p — 2] such that GCD(a, p) = 1. The successive small primes 2,

3,5,7,11, ..., may also be used for a for successive invocations of this test. This gives a slight speed advantage.
However, please refer to Section 6 for instances when using 2, 3, 5, 7, 11, ..., is not appropriate.

2. Compute the largest integer fand ssuch thatp— 1 = 2 s. It follows that s will be odd.

3. Compute y = a’ mod p using the method of Annex A.1.

2 This specification is a technical improvement over the specification in ANS X9.80-2001. The 2001 specification will work in
almost all cases, although this specification is preferred.
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4, Ify=1ory=p-1,then declare 'p is probably prime’ and exit.
5. Fori=1tot-1
i) Lety=y mod p.
i) Ify=p-1,then declare 'p is probably prime’ and exit.
i) If y =1, then declare ‘p is composite’ and exit.
6. Return ‘pis composite’

Example. Let p = 3439601197. Thenp -1 = 2° . 859900299, so t = 2 and s = 859900299. The successive primes 2, -
3, 5, 7, ... are chosen as the bases for the tests, but the computations are shown only for base 2. The modular -
exponentiation procedure given in Annex A.1 gives y = 2° = 1379737433 (mod p) for Step 3. Since yisnot 1 orp—1,
proceed to Step 5. Since t — 1= 1, perform one iteration of this loop. Then, y* = 3439601196 = —1 (mod p), so declare
'p Is probably prime’, then proceed to similar computations for base 3, 5, 7, 11..... Note that for base 3, 3" =1 (mod p)
in Step 4, so it is not necessary to execute Step 5. Similarly for base 7, 7° =1 (mod p) in Step 4, so there is no need
to execute Step 5.

52.3.2 Lucas?
The Lucas algorithm to test a candidate p is as follows:

1. Testif pis an exact square. If so, return ‘p is composite’ and exit.

2. Find the first D in the sequence {5, -7, 9, -11, 13, =15, 17, ...} for which the Jacobi symbol (%) = —1. See Annex

A.2 for a method to compute the Jacobi symbol. The probability that any given value of D will yield —1 for the
Jacobi symbol is about 2. If for any D in the sequence the Jacobi symbol is 0, declare ‘p is composite’ and exit.

3. Compute U, . 4 = Lucas(D, p + 1, p). Annex A.5 defines the subroutine Lucas and shows how to compute
Lucas(D, p + 1, p).

4. IfU,.q1 =0 (mod p), then p is a Lucas probable prime.

Example. Select p = 3439601197. A computation of the Jacobi symbol reveals that (§)= —1 for D = 5. The
computation of Lucas(D, p + 1, p) returns 0. Since the final value of U, . 1 mod p is 0, declare p to be a Lucas
probable prime. Annex A.5 shows some of the internal calculations of the Lucas sequence.

NOTES

1—The motivation for Step 1 is that if p is an exact square, the Jacobi symbol in Step 2 will always be +1 or 0, never —1. Step
1 may equivalently be applied after some number of values of D have been tried unsuccessfully in Step 2. When performing
this Lucas test as part of 5.2.1 Step (4b), it is highly unlikely that an exact square in Step 1 or a value of D with Jacobi symbol
0 in Step 2 will ever be encountered.

2—There are several “Lucas tests” in the literature. This version is described by Baillie and Wagstaff [2].

4 Formerly called "Lucas-Lehmer” in ANS X9.80-2001. This specification is a technical improvement over the specification in
ANS X9.80-2001. The 2001 specification will work in almost all cases, although this specification is preferred.
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5.2.3.3 Frobenius-Grantham
Algorithms for performing the polynomial arithmetic required by this method are given in Annex A.4.

Let f(x) be a low-degree monic polynomial. The selection of f(x) is discussed below. Let d be the degree of f(x),
and let D be its discriminant. p is the integer being tested. To compute the discriminant, see below. Perform the
following steps:

1. Confirm that GCD(p, D - f(0)) = 1. If not, return ‘p is composite’ and exit.
2. Set fy(x) = f(x) mod p.

3. Fori=1tod
) Let Fi (x) = GCD(X"" = x, f_4(x))
i) Let fi(x) = fa(x)/Fi(x)
iii) If i does not divide the degree of F(x), declare ‘p is composite’ and exit.

iv) If f;(x) does not equal 1, declare p is composite and exit.

4. Fori=2tod

Compute F; (¥’) mod F; (x). If the result is non-zero for any i, declare ‘p is composite’ and exit.

degree(F; (x))
i

5. Compute S=). fori <dand ieven.

1 4+/D . . .
6. If S does not equal 5 ((E) — 1) mod 2, then declare ‘p is composite’ and exit.

7. Declare ‘p is probably prime’ and exit.

It is suggested that f(x) should be a quadratic polynomial f{x) = (x — a)(x — b) or fix) = x¥* — cx — e. It is true that in the
first case, if p is a Frobenius-Grantham probable prime, then it is also an ordinary probable prime to the bases a and
b. If fix) = x* — cx — e, then p will also be a Lucas probable prime. The Frobenius-Grantham test subsumes the
ordinary probable prime test, the Lucas, and several other tests as well (which are beyond the scope of this
document). Higher degree polynomials are also permitted, but are beyond the scope of this document. It is assumed
that any implementer who wishes to use them will have sufficient mathematical background to know how to compute
their discriminants.

The discriminant of a linear polynomial is 1. The discriminant of x* — cx — e is ¢ + 4e. The discriminant of (x — a)(x
—b)is (a + by — 4ab.

Multiple rounds of this algorithm are executed by selecting different polynomials flx). A polynomial may be
randomly selected by first fixing its degree, then choosing its coefficients as random integers taken modulo p.

Example. Take p = 3439601197. Select f(x) = x° + x + 1. Then, d = 2 and the discriminant is D = —3. The Jacobi
symbol (EEU s 1.
1. Confirm that GCD(p, -3 - f(0)) = 1.

2. fox)=fix)=x*+x +1.
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3. i=1, Fi(x) = GCD(X" — x, fy(x)) = x* + x + 1 by the methods in Annex A.4.
Then fi(x)= (X +x+ 1)/ (X* +x+1)=1.

I =1 divides d = 2, so continue.

=2, Fax) = GCD(xP“E —x, 1) = 1. The methods of Annex A.4 need not be applied here, because
f1(x) = 1. This condition is a fairly common occurrence and is worth coding.

Then f2(x) = 1. The degree of f; (a constant polynomial) is O.

i = 2 divides 0, so continue.
4. Fori=2, F(x") mod F,(x) =1 mod 1 =0, so continue.
5. Fori=2, S =degree(F)/2=0/2=0.

6. Now, % ((%) —1)mod 2=12 (1-1) mod 2 = 0. Since this equals S, declare p to be a Frobenius-Grantham

probable prime and exit.
5.2.4 Testing Using Deterministic Methods

5.2.41 Classical Methods

This section discusses techniques for rigorously proving primality. They are very efficient for small primes (say
around 100 bits) and sometimes work well for larger primes. They can also work well when there are known large
prime factors of p — 1 and/or p + 1 such as the case when constructing strong primes. (See Section 5.4)

These methods usually succeed within milliseconds for primes up to 100 bits on a typical fast PC. When these
methods succeed, they also give a small certificate of primality.

It is important that there is a high degree of certainty that the number being tested is prime before trying any of
these methods. If a candidate really is not prime, then both PPLS (Section 5.2.4.1.2) and KL (Section 5.2.4.1.3)
may not terminate.

5.2.4.1.1 Trial Division

Trial division is the oldest of prime testing methods. An integer is proved prime by showing that it has no prime
factors less than or equal to its square root. This procedure is not recommended for testing any integers longer
than 10 digits.

To prove p is prime:

1. Prepare a table of primes less than or equal to \p. This can be done by applying the sieve procedure in Annex
A3.

2. Divide p by every prime in the table. If p is divisible by one of the primes, then declare that ‘p is composite’ and
exit. It is also allowed to divide p by composite numbers, if it is convenient to do so. For example, rather than
preparing a table of primes, it might be more convenient to divide by all integers except those divisible by 2, 3 or 5
(as well as 2, 3, or 5 themselves, of course).

3. Otherwise, declare that ‘p is prime’ and exit.

Example. For p = 3439601197, then Vp ~ 58648.11. p is not divisible by any prime less than or equal to 58648,
SO pis prime.
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5.24.1.2 Proth-Pocklington-Lehmer-Selfridge (PPLS)

The second method is an extension of a method known as PPL (Proth, Pocklington, and Lehmer). The extension
Is due to John Selfridge. See Section B3 in [2]. Verify that p passes at least one iteration of Miller-Rabin, so that
there is some confidence that p is prime before applying this test.

Suppose p is the prime to be verified. Suppose there exists a partial factorization of p — 1 and p + 1 as follows:
p=1=F;-r
p+1=F-s.

F1 is the product of some known prime factors of p—1; F; is the product of some known prime factors of p + 1, and
r and s have no prime factors less than By, and B, respectively, where B; and B, are integers chosen by the
implementer, and F; and F, are completely factored. The choice of values for By and B: is left to the implementer.
See the note below for reasonable choices. If B; and B, are chosen as large as p'”, then this method will always
work, but it will be very slow for p greater than about 60 bits. If B; and B, are chosen smaller than p'”, then this
method will not always work; the inequality in Step 1 may not be satisfied.

1. Let
G=max(B; Fy, B, F, - 1).
If p< G B; B> F1 F2 /2, and the conditions in Step 2 and Step 3 hold, then p is prime.

2. p does not divide U, = Lucas(D, h, p), where h = (p + 1)/q for each prime g dividing F>. D is an element in the

sequence {5, -7, 9, —11, 13, -15, 17, ...} for which the Jacobi symbol (%) = —1. A different value of D may be

chosen for each prime g when computing U,. It is sufficient to find just one value of D that works for each prime. If
p does divide U, for some choice of D, continue trying other values of D.

3. GCD{am - _q, p) = 1 for all primes g dividing F; for some value of a that is co-prime to p and that can be
different for each value of g.

If any of the conditions cannot be met, then the method fails. If this happens, either increase B; and B, and repeat
the calculations or use some other method. Failure of the method does not imply that p is composite.

This test works any time that the product of all the known prime factors for p — 1 and p + 1 taken together exceeds
p'°. This test works very quickly for numbers up to about 35 decimal digits because it is easy to find enough
factors of p £ 1. For larger numbers, it will sometimes work quickly, depending on whether enough small factors of
p = 1 can be found. Finding enough factors of p £ 1 is what makes the algorithm slow for large values of p.

A certificate for this primality proof consists of the following information:

B;, B, G, all of the prime factors of Fy and F, and the values of a and D corresponding to the primes dividing F;
and F,.

Example. For p = 3439601197, take B, = B, = 30000 and then:
p—1=2°-3-286633433

p+1=2-11-19-127 - 64793
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with F, = 12, F; = 53086, r = 286633433, and s = 64793. Then G = max(360000,1592579999) = 1592579999.
Also, p < G By B, Fy F»/2 and r and s have no factors less than 30000.

Now compute U, for each of h=(p + 1)/2, h=(p + 1)/11, h = (p + 1)/19, and h = (p + 1)/127.

For g = 2, it is determined that D = 5 has (%) = -1, but U, = 0 (mod p). This does not satisfy the requirement of

Step 2, so continue trying other values of D. For D = -19, (%) =—1, and p does not divide U, = 1430646294.

Forg =11, and for D = 5, p does not divide U, = 1913300486.
Forg =19, and for D = 5, p does not divide U, = 2036784421.
For g =127, and for D = 5, p does not divide U, = 2603656754.

Now, try to satisfy the requirement of Step 3. Determine that
For g =2, 2" "% = -1 (mod p), and GCD(=2, p) = 1.
For g = 3, 2 "° = 1346083919 and GCD(1346083918, p) = 1.

All of the requirements in Step 1, Step 2, and Step 3 have been satisfied, so p has been proved prime. A
certificate consists of (30000, 30000, 1592579999, [(2, —19), (11,5), (19, 5), (127,5)], [(2, 2), (3,2)]). The pairs of
numbers in [] are the primes dividing F, with the corresponding values of D, and followed by the primes dividing F;
with the corresponding values of a.

NOTES

1/6

1. A good value to choose for B and B; is about p™. If the method does not work, these values can be increased.

2. This algorithm can be used recursively. If a factorization of p + 1 or p — 1 reveals that it is the product of some small
primes times a large probable prime, then this algorithm can be applied recursively to that large probable prime cofactor.
This would then give a full factorization of either p + 1 or p — 1, which in turn would allow the proof to be completed.

5.2.4.1.3 Kraitchik-Lehmer

Another deterministic testing technique is due to Kraitchik and Lehmer. Suppose all of the prime factors of p — 1
are known. If there exists an integer a for each prime q dividing p — 1 (the value of a can be different for each q)
such that

a®” "M £ 1 (mod p)
and

a8~ '=1 (mod p),
then p is prime.
This method requires that all the prime factors of p — 1 be known. This makes it less flexible and less effective
than PPLS. PPLS will succeed much more often. The method is, however, easier to code. There is at least a 50%
probability that any randomly chosen a will work, so in practice checking only a few values of a usually suffices.

The probability of not succeeding after trying k different values of a is less than 27 Choosing the values of a
consecutively from the sequence of integers starting with 2, but skipping perfect n" powers (n > 1), will be the
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most efficient for computation: {2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30,
31, 33, 34, 35, 37, ...}.
1. Set a threshold k for stopping.

Let n be the number of factors of p — 1; i.e., denote the factors as {g1, g2, ..., Qa}.

Let j = O (to keep track of how many g; have been satisfied).

Leta=2.

2. Ifa”" =1 (mod p) then
for each i for which an a has not been found for factor g,
if a”~ "M% 1 (mod p) then,
increment j, and

print (or store) {q;, a}.

3. Ifa<kandj<nthen
increment a by 1,

go to Step 2.
4. |Ifj=n, then pis prime.

A certificate for this primality proof consists of a list of the values of the factors of p—1 and the corresponding
values of a.

Example. For p = 3439601197, p— 1 = 2° - 3 - 286633433. Then:

2"~ =1 (mod p) and

Forg=2,2" " =1 (mod p).

p—1)3

Forg =3, 2” " = 1346083919 (mod p).

For g = 286633433, 2~ #°°°%% Z 4096 (mod p).
Thus, p Is proved prime.
A certificate consists of the list [(2,2), (3,2), (286633433, 2)].

NOTE In this case, a single value of a is sufficient for all factors of (p—1). This need not be the case in general. Further, the
proof depended upon knowing that 286633433 is prime. This may be proven by any of the methods described in this
document. In particular, trial division would work well. Alternatively, one could apply the methods of this section to
286633433. This means that this algorithm can, if desired, be used recursively.

5.2.4.2 Prime Testing with Elliptic Curves

The Elliptic Curve Primality Proving (ECPP) algorithm is a truly general-purpose algorithm that can prove primality
of arbitrary large primes. The algorithm is also very efficient. Typically, a proof for a 200 decimal-digit number will
take less than half an hour on a fast workstation. Unfortunately, the ECPP algorithm is exceedingly complex to
specify and code. However, the proof it constructs is fairly simple to verify independently. The algorithm
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constructs a primality certificate containing sufficient information to verify the proof, and the computations
necessary for validating the certificate are necessary components of any public-key Elliptic Curve software.

This standard defines the structure and components of ECPP certificates, and specifies how they are verified.
However, it is beyond the scope of this standard to define and specify the ECPP algorithm for constructing these
certificates, due to its extreme complexity. Successful verification of an ECPP certificate, however it is created, is
recognized by this standard as sufficient to accept a number as prime. Use of the ECPP algorithm itself is limited
by this standard to the construction of ECPP certificates. This means that the existence, or assertion of existence,
of an ECPP certificate does not by itself constitute sufficient grounds for primality under this standard; it is the
independent verification of the certificate that establishes primality. Therefore, anyone using the ECPP method is
required by this standard to save the resulting certificate. Such a certificate must be securely stored if the prime is
part of a private key, just like all other information associated with a private key. Refer to Annex B.1 for further
discussion.

ECPP is a recursive descent algorithm. At each level of descent, the problem is reduced to proving that a smaller
number than the previous level is prime, until finally the number is small enough to be proved prime by the
methods of Section 5.2. This is done by constructing an elliptic curve modulo the candidate prime and exhibiting a
point on this curve with sufficiently large order. If the order of the exhibited point is prime, then the candidate is
also prime. The order of the exhibited point becomes the candidate prime for the next level of descent.

ECPP Primality Certificate

The structure of a section of the certificate is as follows: The sections are repeated for every descent level of the
algorithm, starting at 0. The overall certificate is an ordered union of the individual sections, ordered by descent
level.

J: The descent level.
The prime being proved at this level.
D : The value of the discriminant of the complex quadratic field. If D = 0, then p was proved

prime with the methods of Section 5.2. The data below is then omitted and replaced with
data specific to the method used, including identification of the method.

a,b: The coefficients of the elliptic curve y* = x* + ax + b.

m . The number of points on this curve modulo p.

fi f2, f5, ... - All of the prime factors of m.

S=(x,V): A point § on the curve having coordinates (x, y); lLe., x and y satisfy

y* = x> +ax + b (mod p).
q: the order modulo p of the point (x, y).

ECPP Certificate Verification

The certificate is verified a level at a time, beginning with level 0. For each level, perform the following steps:

1. Verify that the correct prime is being proved. For level 0, it should be the target number for the certificate.
Otherwise, it should be the order g of the point exhibited in the previous level.

2. Verify that 4a° + 27b% # 0 (mod p); i.e., that a and b define a nonsingular elliptic curve.
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3. Verify that the point (x, y) is a valid point on the curve (i.e., ¥ = x° + ax + b (mod p)). If the point is
represented by three coordinates instead of two, then a check shall be made to verify that the point is not the
elliptic curve identity O.

4. Verify that gS = O. This is scalar multiplication of the elliptic curve point S = (x, y) by q. Refer to ANSI| X9.62
(particularly Annexes B.3 and D.3.2) for the definition and technigues of this multiplication. If ¢S = O, and if g
Is prime (verified by succeeding descent levels), then g is the order of the point (x, y).

5. Verify that g > (p"'* + 1)°. Then p is prime if g is prime; i.e., g becomes the candidate prime to be proved by
the next level.

NOTE  Verification does not use D, m, or the factors of m. Nevertheless, for a number of reasons they appear in certificates
produced by many implementations of the ECPP algorithm. This standard includes them in the certificate definition
in order to accommodate the use of such certificates.

The method is illustrated in Table 1.

Table 1: An ECPP certificate for p = 377681287.

J p D| (a b) m factors of m S q

0| 377681287 |-3| (0,343) | 377660188 | {2, 19, 97, 51229} | (328938831, 132650121) | 51229
1 51229 -3| (0,4) 50817 {3, 13, 1303} (18245, 46776) 1303
2 1303 -3 (0,1) 1236 {2, 3, 103} (1152, 1203) 103

3 103 -3 | (0, 22) 124 {2, 31} (31, 47) 31

4 31 0 31 is a prime by trial division.

NOTE This example could easily have been terminated at an earlier stage by appeal to trial division, but was

continued as far as possible for the purpose of illustration.

5.3 Constructive Methods

5.3.1 Shawe-Taylor’s Algorithm?

The following algorithm generates guaranteed primes that need not be tested by any other algorithms. It is
therefore intended for first party prime generation. This version of the algorithm cannot be used to test a prime
given by a second party. This algorithm is recursive. To generate a prime of b bits let the routine
ST _Random_Prime(b) return a prime of b bits:

1. If b <33, then let p be an integer of b bits generated uniformly at random from the set of b-bit integers. Test p
for primality by trial division. That is, the primality of p is proven by trying all possible prime divisors up to its
square root. The methods of Section 5.2 may also be used in place of trial division for improved speed. If p is
prime then return(p). Otherwise, repeat this step.

4 This specification is a technical improvement over the specification in ANS X9.80-2001. The 2001 specification will work in
almost all cases, although this specification is preferred.
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2. Ifbisodd, let g=ST_Random_Prime((b + 3)2). If b is even, let g = ST_Random_Prime((b + 2)/2).

3. Select a uniformly chosen random integer x in [2° ", 2° — 1] or from the interval [(\[2 )(2° "), (2°- 1)].
4. Lettbe the least integer greater than x/2q).

5. If2tg+ 1 = 2°, then let t be the least integer greater than 2° ' /2q).

6. Lety=2tq+1.

7. Select, uniformly at random, an integer a in [2, y-2].

8. Letx=a"mody.

a. If x does not equal 1 and GCD(x-1,y) = 1 and x” = 1 (mod y), then return(y).
Otherwise, lett=t+ 1.

b. Goto Step 5.
Example. Generate a 40-bit prime via ST _Random_Prime(40).
1. b =33, so proceed to Step 2.
2. Setg=ST Random_Prime(21). This invokes this procedure recursively:

1. Since b < 33, randomly select 21-bit integers until finding one that is proven prime via trial division. This
procedure gives (say) p = 1832371, and thus p is returned.

Now, g = 1832371 so proceed to Step 3.
3. Choose x = 966903465047 as a random integer in [2°°, 277 — 1].
4. Then, t = 263840.
5. Since 2tg + 1 < 2*, proceed to Step 6.
6. Then, y =2tq + 1 = 966905529281.
7. Select (say) a=41767655812.

8. Compute x = 34463255264 = a°' mod y. However, GCD(x — 1,y) = 1553, so set f={+ 1 = 263841. Then, 2{g <
2*° so return to Step 5.

After 40 iterations of repeating Steps 5 through 8, it is determined that t = 263879 and y = 967048454219
satisfy the conditions in Step 8 with a = 18999231450, so return the prime p = 967048454219 as the
constructed prime.

5.3.2 Maurer’s Algorithm

This is another recursive algorithm that returns guaranteed primes. It is therefore intended for first party prime
generation. It cannot be used to test a prime given by a second party. M_Random_Prime(b) will return a random
prime of b bits:

1. Letc¢ =1.05, rmax = 20.

A A T e e .
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2. Ifb<20
a. Setn=arandom b-bit integer.
b. Determine, by trial division or by the methods of Section 5.2, that n is prime. If n is not prime, go to 2a.

c. Return n.
3. SetB=c- b’

4._ If b>2 - rmax, then
- a. Select s uniformly at random in [0,1].
b. Letr=2". It suffices, in practice, to compute r to single precision.
c. frmax=(b—-r-b) gotoda.
Else set r=0.5.

5. Setqg=M_Random_ Prime([ r-b]+1).
6. Set/=|2""2q) |
7. Setsuccess = False.

8. While (success is False)

a. Set R = a uniformly chosen random integerin [/ + 1, 21].

b. Setn=2Rqg+ 1.

c. Determine, by trial division, if n is divisible by a prime number < B (defined in Step 3). If it is not, then
. Set a = a uniform random integer in [2, n—2].
i, Compute e = 3" mod n.
. Ife=1

then set e = a*“mod n and d = GCD(e-1,n).

If d =1, then set success = True.

9. Return n.

NOTE A speed improvement can be obtained using the methods of Section 5.2 to prove that n is prime in Step 8, rather
than using the method given above.

Example. Generate a 40-bit prime via M_Random_Prime(40).

1. Setc=1.05and rmax = 20.

2. b>20, soproceed to Step 3.

3. Set B=1680.

4. b<2-rmax, sosetr=.5and proceed to Step 5.

5. Setg=M_Random_Prime(21). This calls the procedure recursively.

1. Setc=1.05and rmax = 20.
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2. b=>20, so proceed to Step 3.

3. SetB=463.01

4. b<2-rmax, sosetr=0.5and proceed to Step 5.

5. Setg=M_Random_Prime(10). This again calls the procedure recursively.
1. Setc=1.05and rmax = 20.

2. b < 20, so randomly search for a 10-bit number that is proven prime by trial division. This
returns g = 571 (say).

6. Set/=[2%°/(2-571)]=918.
7. Setsuccess = False.

8. Set R=1170 (say), a uniform random number in [919, 1836]. Set n = 1336141 =2-R-qg + 1. This
happens to be prime, so return n = 1336141.

6. Now, g =1336141. Set I = 2%(2 - q)] = 205725.

7. Set success = False.

8. Select R repeatedly, uniformly at random, until finding that R = 300713 (say) gives n=2"-R-g+1=
803589937067. A value of a = 7117234671 chosen randomly satisfies GCD(a*"—1, n) = 1. Therefore, set

success = True and proceed to Step 9.

9. Return n = 803589937067 as the constructed prime.

5.4 Side Conditions for Generating Primes using Random Integers

It is sometimes desirable to generate random primes with certain side conditions. For example, it might be desired
to generate a prime p such that p = 1 (mod k) for some k. Or it might be desired that p = 1 (mod k) and p = -1
(mod s) for some k and s. These are the conditions required when generating so-called strong primes. A strong
prime p is one for which both p— 1 and p + 1 have a large prime factor. Such primes are generated as follows.

Suppose it is desired that p = 1 (mod p4), p = -1 (mod p;), and p has k bits. First, generate p; and p, as primes of
the desired size. Then

1. Compute R = (p; ' mod p1) p — (1~ mod py) ps.

2. IfR<0,replace Rwith R + pyp..

3. Select a uniformly chosen random integer X in the desired interval.

4. LetY=X+(R-Xmod pip:).

5. Sievethesequence Y, Y +pip: Y+ 2pip2, ... using the sieve procedure in Annex A.3.

Test candidates that survive the sieve for primality until a prime is found or until the candidate is outside the

desired interval. In the latter case select a new X and start again. The methods of Section 5.2.4 are applicable,
since p — 1 and p + 1 already have a large known prime factor. The computation of R is an application of the
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Chinese Remainder Theorem (CRT). Additional modular side conditions can be added, if desired, by using the
CRT. See reference [9] for a full description of the CRT.

If it is desired to construct primes with only one modular side condition, then do the following. Suppose it is
desired that p = a (mod p4) for some a.

1. Select a uniformly chosen random integer X in the desired interval.

2. Let R=Xmod p;

3. LetY=X+(a-R).

4. Sieve the sequence Y, Y +p; Y +2p,, ..... using the sieve procedure in Annex A.3.

5. Test candidates that survive the sieve for primality until a prime is found or until the candidate is outside the
desired interval. In the latter case select a new X and start again..

Example 1. Find a 32-bit prime such that p =1 (mod 1009).

Choose (say) X = 2579700989. Then compute R =779 =X mod 1009 and Y =X+ R = 2579701768. Y is the first
number greater than X that is 1 modulo 1009. Applying the sieve procedure from Annex A.3 with primes less than
20 yields that among the first 40 positions, positions 1, 15, 19, 25, 27, 31, 37, and 39 are left untouched by the
sieve. These correspond to Y + 1 - 1009, Y + 15 - 1009, ...etc. Testing each one for primality by trial division
reveals that Y + 27 - 1009 is prime.

Example 2. Find a 32-bit prime p such p=1 (mod 1009) and p = -1 (mod 827).

Again choose X = 2579700989. Compute R = (827 ' mod 1009) - 827 — (1009 mod 827) - 1009 = —311780.
Since R < 0, replace it with R + 1009 - 827 = 522663. Then, Y = 2580620419. This is the first integer greater than
X congruent to 1 modulo 1009 and —1 modulo 827. Applying the sieve procedure from Annex A.3 with primes less
than 20 yields that among the first 50 positions, positions 14, 20, 24, 30, 38, 44, and 48 are untouched by the
sieve. These correspond to Y + 14 - 1009 - 827, Y + 20 - 1009 - 827, ... etc. Testing each one for primality reveals
that Y + 48 - 1009 - 827 is prime.

6 Candidate Prime Testing Methods

This section discusses methods for second party prime testing; that is, the testing of primes which are given by
another party.

Theoretically, it is possible to generate a composite integer which will pass one round of the Miller-Rabin (M-R)
test with probability = . However, it is not possible to construct a composite that passes M-R with probability =
and also passes a Lucas test with high probability. Thus, while one normally needs to be extra cautious in using a
prime generated by someone else, the methods of this standard do not permit another party to construct
composites in such a way that the user of this standard can be fooled into believing they are prime.

Therefore, with one exception, the methods of Section 5 are adequate for testing primes that have been
generated by an outside party. The exception is that the use of successive primes 2,3,5,7,11, ... as the choice of
base for a Miller-Rabin test is disallowed. The bases must be randomly selected and their choice must be
unknown to the outside party. Similarly, the choice of polynomials chosen for Frobenius-Grantham must be kept
secret from the outside party as well.

If absolute certainty is required when testing a candidate prime given by an outside party, then one of the
deterministic methods must be applied.
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7 Tables of Parameters

7.1 Rounds Required for Miller-Rabin if Followed by Lucas

Table 2 gives, as a function of the size of the prime number being tested, the number of rounds of the Miller-
Rabin algorithm needed to achieve a failure probability of less than 27'°. This table assumes that the M-R tests
will be followed by a Lucas test. Otherwise, 50 rounds of Miller-Rabin are required.

Table 2: Rounds Required for Miller-Rabin

Size of Prime (in bits) Number of Rounds to Achieve 27"
Less than 100 50
100 - 255 27
256 - 511 15
512 - 767 8
768 - 1023 4
1024 or more 2
NOTE Taken from reference [5]. See the Bibliography. The number of rounds
stated above for each range of primes is the maximum required for that range. The
ranges are included for convenience of implementation and interoperability.

7.2 Rounds Required for Frobenius-Grantham

Table 3 presents the number of rounds of the Frobenius-Grantham algorithm that are required to achieve a failure
probability of less than 27'%°. This table is derived by combining the results of reference [7] with the worst case,
per-iteration failure probability of 1/7710 for this method, assuming that quadratic polynomials are used. While
similar probabilities certainly exist for cubic and higher degree polynomials, nothing has been proved. The
analytical estimates given in reference [5], from which Table 2 is taken, have not yet been worked out by
mathematicians for the Frobenius-Grantham method. The numbers below are a crude upper bound on the
number of rounds needed.

Table 3: Rounds Required for Frobenius-Grantham

AR Wir s =
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Size of Prime (in bits) Number of Rounds to Achieve 27"
Less than 256 8
256 — 511 ;
512 - 767 3
768 or more 2

NOTE Derived from references [6] and [7]. See the Bibliography. The number
of rounds stated above for each range of primes is the maximum required for that
range. The ranges are included for convenience of implementation and
interoperability.
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Annex A
(normative)

This Annex presents algorithms that can be used to effect the computations from Sections 5 and 6. Alternative
methods that give identical results are allowed.

A.1 Modular Exponentiation
To compute a“ mod n:
1. Write k in binary as b,b,_+...bg where b;=0o0r 1 and b, is 1.
2. Putx=a.
3. Fori=n-1downto0do
Replace x with x* mod n.
If b, =1, also replace x with (a - x) mod n.
4. Return x.

Equivalent methods are allowed.

A.2 Jacobi Symbol®

The Jacobi symbol is derived from the Legendre symbol. Let p be an odd prime, and let a be a positive integer. The
Legendre symbol of the integer a with respect to the prime p may be computed by Euler's Theorem:

@) =a” " mod p

The Legendre symbol of multiples of p with respect to the prime p is zero. When the integer a is not a multiple of a
prime p, then the Legendre symbol of a with respect to p is valued to either +1 or —1, depending on whether a is
or is not a square modulo p.

Let n be an odd positive integer, and let a be a positive integer. The Jacobi symbol of a with respect to n is the
product of the Legendre symbols of a with respect to the prime factors of n (counting multiplicity of the factors).

Therefore, if n = pq, then (%) = (‘g) (3) :

By definition, the Jacobi symbol of any integer with respectto 1 is 1.

S This specification is a technical correction to the specification in the ANS X9.80-2001. The 2001 specification shall not be
used as it will sometimes produce erroneous results.
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The Jacobi symbol of any integer a with respect to any odd positive integer n may be efficiently computed without
knowing the prime factors of n using the Law of Quadratic Reciprocity. See [9], Algorithm 2.149.

To compute (%) , first reduce a modulo n so that 0 < a < n, then perform the following:

Jacobi (a, n) /0 < a<n, nodd and positive
1. fn=10ra=1,thenreturn 1.

2. If é =0, then return 0.

3. Find e suchthata=2° a:, where a, is odd.

4. Ifeiseven,thensets=1.
Elseifn=1 (mod 8) or n=7 (mod 8), then set s = 1.

Else if n= 3 (mod 8) or n =5 (mod 8), then set s = —1.
5. Ifn=3(mod4)anda; =3 (mod4), then set s = -s.
6. Setn,=nmod a;.
7. Return ( s - Jacobi (n4, a1))
Example. Compute the Jacobi symbol for a =5 and n = 3439601197.
1. nisnot1andais not 1, so proceed to Step 2.
2. aisnot0, so proceed to Step 3.
3. 5=2"-5soe=0anda; =5.
4. eiseven,sosets=1.
5. a;is not congruent to 3 modulo 4, so do not change s.
6. Setn,;=2=nmod>5.
7. Compute and return (1 - Jacobi (2, 5)). This calls Jacobi recursively. Jacobi (2, 5) = -1, so —1 is returned.
1. nisnot1andais not 1, so proceed to Step 2.
2. ais not 0, so proceed to Step 3.
3. 2=2"-1,sopute=1anda; =1.
4. eisodd,andn=5(mod 8), sosets=-1.
5. nis not 3 modulo 4, so proceed to Step 6.
6. Setny=0=nmod 1.

7. Return (— 1 - Jacobi (0, 1) =—1). This calls Jacobi recursively.
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1. nis 1, soreturn 1.

Thus, the value of the Jacobi symbol is —1.

A.3 Sieve Procedure

A sieve procedure is described as follows: Given a sequence of integers Yy, Yo + 1, ..., Yo +J, a sieve will identify
which integers in the sequence are divisible by primes up to some selected limit.

Start by selecting a factor base of all the primes p;, from 2 up to some selected limit L. The value of L is arbitrary
and may be determined by computer limitations. A good, typical value of L would be anywhere from 10° to 10°.

1. Compute S; =Y, mod p;for all p; in the factor base.
2. Initialize an array of length J + 1 to zero.

3. Then starting at Yo— S; + p;, let every p;" element of the array be set to 1. Do this for the entire length of the
array and for every .

4. When finished, every location in the array that has the value 1 is divisible by some small prime, and is
therefore composite.

The array can be either a bit array for compactness when memory is small, or a byte array for speed when
memory is readily available. There is no need to sieve the entire sieve interval at once. The array can be
partitioned into suitably small pieces, sieve each piece, then go on to the next piece. When finished, every
location with the value 0 is a candidate for prime testing.

The amount of work for this procedure is approximately M log log L, where M is the length of the sieve interval,
this is a very efficient procedure for removing composite candidates for primality testing. If L = 10°, the sieve will
remove about 96% of all composites.

In some cases, rather than having a set of consecutive integers to sieve, the set of integers to be tested consists
of integers lying in an arithmetic progression Yy, Yy + h, Yy + 2h, ..., Yo + Jh, where h is large and not divisible by
any primes in the factor base. As before, '

1. Start by selecting a factor base and initializing an array of length J + 1 to 0.
2. Again, compute S; =Yy mod p;for all p; in the factor base.
3. Also compute T;=hmod pjand r=—S; 7,” ' mod p;

4. Then starting at Y, + r, let every p,-m element of the array be set to 1. Do this for the entire length of the
array and for every j. Note that the position Y; + rin the array actually denotes the number Y} + rh.

5. As before, when finished, every location in the array that has the value 1 is divisible by some small
prime and is therefore composite.

NOTE The prime "2’ takes the longest amount of time (M/2) to sieve since it touches the most locations in the sieve array.
An easy optimization is to combine the initialization of the sieve array with the sieving of the prime ‘2°. With a little
clever coding, the sieving of the prime ‘3’ can be included during initialization. These optimizations can save about
1/3 of the total sieve time.
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A.4 Algorithms for Polynomial Arithmetic

The following notation is used throughout this section. Let fix) =1, x" + f,_+ X'+ . +fyand g(x) = gy x° + Qg_1X
Ty 4 go be polynomials whose coefficients f; and g; are integers and f, and g4 are not zero. Let p be a prime.
The degree of f(x) is n and the degree of g(x) is d. Without loss of generality, it is assumed throughout this annex
that n > d. This implies g; =0 for /1 > d. Let s = maximum(degree(f(x)), degree(g(x))), thus s =n.

This section presents the algorithms needed to execute the Frobenius-Grantham algorithm.
l. Polynomial Reduction mod p.

To compute f(x) mod p, replace f(x) with

(f,mod p) X"+ (f,_ymod p) X"~ ' + ... + (f,mod p).

That 1s to say, replace each coefficient with its value modulo p.

Il. Polynomial Addition.
f(x) + g(x) = (F; + Gs) X + (o1 + gs—1) X~ + ... + (fy + go)

The sum of two polynomials has degree s. lts coefficients are the sum of the respective coefficients.

lll. Polynomial Multiplication.

The degree of the product of two polynomials is the sum of the degrees of the individual polynomials. Let m =
n +d. Then

fX)Q(X) = rm X" + rm_ 1 X7+ 1
where My = fg Gh + f1 Qh - 1 + rg gp-2 + ...+ fh Jo.

Example.
fix) = 2x° + 3x + 1
g(x)=3x" +x° +2x +2

<

xX)aqlx)=rex +r4x4+r x3+rgx2+r1x+r
g 5 3 0

where rs=2-3
R=3-3+1-2
rR=1-3+3-1+2-2
rpR=1-2+3-2+2-2
ri=1-2+3:-2
rp=1-2

IV. Polynomial Division.

Polynomial division represents f(x)/g(x) as f(x) = q(x)g(x) + r(x), where g(x) is the quotient polynomial, and r(x) is
the remainder. Unless g(x) is monic or there are certain other very restrictive conditions, the coefficients of g(x)
and r(x) will not be integers. They will be rational numbers. The degree of the quotient g(x) will be n — d, and the
degree of the remainder will be less than d.
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1. Seth(x)=fix)andi=n-d
2. While (i > 0)
a. Compute coefficient: g;= hy.; /94
b. Compute partial product: s(x) = g; X' g(x)
c. Subtract: Replace h(x) with h(x) — s(x), and setij=/i-1
3. Setr(x)=h(x)
Example.
fix)=3x"+x" +2x + 2
g(x)=x" +3x+1
Set h(x) =3x" +x* +2x + 2
Seti=3-2=1
g1=3/1=3
s(x) = 3 x g(x) = 3x° + 9x° + 3x
A(x)=3x" + X +2x+2 - (3X +9x° +3x) == 8xX" = x + 2
Seti=i—-1=0
go=—81=-8
s(x)=—8g(x)=—8x"—24x-8
h(x)=—8x"—x—(—-8x"—24x-8) =23 x + 10
Since i = 0, the algorithm is complete. g(x) = 3x— 8 and r(x) = 23x + 10

NOTE  Some of the algorithms herein require the computation of f(x) mod g(x). This is the same as r(x), i.e. the remainder
when f(x) is divided by g(x).

V. Polynomial Division mod p.
Polynomial division mod p is identical to polynomial division except that the algorithm starts by replacing g(x) with
((gs~ ' mod p) g(x) mod p). That is to say, compute the inverse modulo p of the lead coefficient of g(x), multiply the

entire polynomial by that inverse, then reduce modulo p. Perform the division, then reduce g(x) and n(x) modulo p.

NOTE  Various methods including the extended Euclidean algorithm can be used to compute the inverse of a non-zero
integer.

VI. Polynomial Exponentiation.
To compute f(x)®

1. Write e in binary as b,b,_1...bg. where b;=0o0r 1 and b, is 1.
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2. Set h(x) = f(x).

3. Fori=n-1downto0do
Replace h(x) with h(x) - h(x). If computing f(x)° mod p, reduce mod p.
If b; =1, also replace h(x) with f{x)h(x). Again, reduce mod p if computing f(x)" mod p

Step 4. Return h(x).
VIl. Polynomial GCD.
To compute GCD(f(x), g(x))
1. Set max(x) = f(x) and min(x) = g(x)

2. Compute the remainder for max(x)/min(x)., i.e. max(x) mod min(x).

Reduce the remainder modulo p if computing GCD(f(x), g(x)) mod p.

3. If the remainder is 0, return(min(x)). If the remainder is a non-zero constant, return the (constant)
polynomial 1.

4. Replace max(x) with min(x), and min(x) with the remainder from Step 2.

A.5 Lucas Sequence®

This section shows how to compute Lucas(D, K, p), the K" element of a Lucas sequence modulo p with pre-
chosen discriminant D.

Lucas(D, K, p)
Initialize: Set P=1,U=1,and V=1
1. LetK K._; ... Ky be the binary expansion of K where K is 1. The bit length of Kis then r + 1.

2. Fori=r-=1to0

Set (U, V) = (UV mod p, v +EDU2 mod p)

If K; =1, then also set

PU + V PV + DU
(U, V) =( > mod p, > mod p)

3. Return (Ux = U).

NOTE  Step 2 contains expressions of the form A/2 mod p, where A is an integer and p is assumed to be an odd integer. If
A/2 is not an integer, in other words, if A is odd, then A/2 mod p may be calculated as (A+p)/2 mod p. (Alternatively,
Al2 mod p = A-(p+1)/2 mod p, for any integer A, odd or even.)

6 Formerly called “Lucas-Lehmer Sequence” in ANS X9.80-2001.
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Example. Select p = 3439601197. A computation of the Jacobi symbol reveals that (%) = -1 for D = 5. We show here
the calculations for Lucas(D, p + 1, p).

Setr=31,P=1,U=1and V= 1. The values of (U,V) mod p at the end of each iteration in Step 2 for j =
30,25,20,15,10,5, and O are:

[ (U, V) mod p

30 (2, 4)

25 (661792756, 730279310)
20 (—605926906, -914766781)
15 (437522511, -1716871053)
10 (—858309982, 204659912)
D (—1043840240, 1506919048)
0 (0,-2)

Return 0 as the value for U, , 4.

NOTE The (U, V) values in the example are represented modulo p as signed integers in the range (—p/2, p/2), but
alternative representations that produce equivalent results, such as the usual [0, p—1] range, are also allowed.
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Annex B
(informative)

B.1 Discussion of General Prime Proving Methods

The methods discussed in Section 5 are all either special purpose methods, i.e. they generate or test primes of
some specific form, or they are random methods; they only guarantee primality with a certain (very high)
probability. There do exist two general-purpose algorithms that can prove primality of arbitrary large primes. The
first is known by several names: Adleman-Pomerance-Rumely, Cohen-Lenstra-Bosma, and the Cyclotomy
Method. The second is known as the Elliptic Curve Primality Proof (ECPP). Both algorithms can readily prove the
primality of numbers up to several hundred decimal digits in only a few minutes on fast workstations.

This standard does not describe these methods, as a detailed description of each one would easily run to 100
pages of text apiece. The code for each would be similarly complicated. This standard does not allow the use of
the Cyclotomy method. The reason for this is that the method is so complicated that the probability of an
undetected bug or programming error far exceeds the probability that a probable prime, generated by the
methods of Section 5.1 is not prime. Furthermore, the method does not provide a certificate of primality that might
be checked by an independent program. If an error is present in the code, it would be very difficult to detect. One
would only detect an error in the code if a number that was declared prime turned out to be composite, and even
then, the fact that the number is composite would need to be determined by some other means.

This standard allows the use of ECPP. While ECPP is also complicated to code, this method provides a certificate
of primality. This certificate consists of numbers that can be easily checked by an independent ECPP program.
Thus, the proof can be independently verified. The Cyclotomy method provides no such certificate and is hence
disallowed. The certificate provides assurance that the primality proof is correct, despite the complex calculations.

Furthermore, ECPP certificate verification can be coded from components of any public-key Elliptic Curve
software, as noted in Section 5.2.4.2. Details of these components can be found in ANSI X9.62. Further
documentation of the method, including the algorithm for constructing the certificates, is found in references [10]
and [1].

B.2 Discussion of the Distribution of Randomly Chosen Primes

When generating random primes, this standard recommends selecting a random starting point, and then
incrementally searching and testing successive (odd) integers until one is found that i1s prime. In addition, because
testing individual integers for primality is expensive, this standard also suggests applying a sieve procedure to

eliminate most of the composites as candidates to be tested.

Since primes are not uniformly distributed over a given interval, the above method does not select all primes with
equal probability. For example, it is believed that there exist infinitely many prime pairs, integers n and n + 2, that
are both prime. On the other hand, the average gap between primes is, by the Prime Number Theorem, about log
n. Therefore, if the initial integer is randomly selected, and subsequent integers are incrementally searched for
primes, it is unlikely that the random starting point will be n + 1, when n and n + 2 are both prime. An incremental
search method is unlikely to select the prime n + 2. However, primes that are preceded by a small gap are
extremely rare. According to Brandt and Damgard [3] the gaps between consecutive primes loosely speaking
follows an exponential distribution. Thus, the set of primes that can likely be found by an incremental search
procedure is nearly the entire set of primes. There is no security risk from using this procedure in the sense that
one might believe that it reduces the space of primes from which selection is made. The procedure selects primes
very nearly, but not exactly, uniformly at random.
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Annex C
Summary of Changes from ANS X9.80-2001
(informative)

C.1 Introduction

This annex summarizes the differences between this version of ANS X9.80 and the previous version, ANS X9.80-
2001.

Technical changes are covered in C.2, followed by editorial changes in C.3. Minor editorial changes have also

been made to ANS X9.80 (e.g., capitalization, punctuation, bibliography style, italics, symbol font, reference
updates), but are not itemized here.

C.2 Technical changes

C.2.1 Search Range for primes

In Clause 5.2.1 the interval [(\/2)(2° "), (2- 1)] was added as an option. The previous specification of this
Standard did not support the specification of a range of output for the prime. This omission has been corrected in
this Standard.

The impact on existing implementations is potentially significant as the needed interface did not exist for some
applications of this Standard, such as the RSA Standards X9.31 or X9.44. If the previous Standard was

somehow used for RSA applications (even though the interface was incorrect), then the intended security may not
have been achieved.

C.2.2 Errors in Jacobi symbol algorithm

The following changes have been made in the algorithm for computing the Jacobi symbol (Clause A.2):
o Step1mustreturn1ifn=1ora="1
o Step2mustreturnOifa=0

With these changes, the special case for a = 2 is no longer necessary. Without these changes, the algorithm does
not compute the correct value in many cases.

Also, for clarity, the following conditions have been noted:
e the Jacobi symbol of any integer with respect to 1 is 1
e the integer n must be odd and positive

e within the algorithm itself, the integer a must be in the range [0, n-1] (the integer a should be reduced to
this range before the algorithm is called)

The example has been updated accordingly.

Copyright American Nal?::l:r‘:; E;;daTd? In:aﬁtaie EUGE - All rH‘:_] hts reserVEd 31

Pravidad by IHS under licansa with AMSI
Mo reproduction or natwarking parmitiad withoul licansa fram IHS Mot tar Rasala



ANS X9.80-2005

(An early version of the 2001 standard may have had an error in the first part of Step 4, but this was corrected in
the version dated August 15, 2001, on which these changes are based. It is mentioned here for completeness.
The first part of Step 4 should test n =1 or 7 mod 8. In an early version it tested n =1 or 3 mod 8.)

The impact on existing implementations is potentially significant, to the extent that the implementations follow
the incorrect algorithm in the 2001 standard, rather than computing the correct Jacobi symbol. Under the 2001
incorrect algorithm it was possible to output a prime that was not a prime and vice versa.

C.2.3 Range of bases in Miller-Rabin test

The range of bases for the Miller-Rabin test (Clause 5.2.3.1) has been updated to [2, p—2]. The rationale is that a
composite will always pass the test for p—1. (The range currently excludes 1 for this reason.) Other algorithms in
the standard already exclude p—1.

The impact on existing implementations is negligible since p—1 is unlikely to be selected at random, nor chosen
intentionally since smaller bases are more efficient.

C.2.4 Perfect squares in Lucas test

A new Step 1 has been inserted to the Lucas test (Clause 5.2.3.2) to exclude perfect squares, as otherwise the
test will not terminate.

The impact on existing implementations is negligible since the condition is highly unlikely to occur in the way the
test is employed in the standard (following several Miller-Rabin tests).

C.2.5 Discriminants with Jacobi symbol 0 in Lucas test

The renumbered Step 2 of the Lucas test (Clause 5.2.3.2) has been updated to return ‘composite’ if the
discriminant D has Jacobi symbol 0. The statement about the probability that the Jacobi symbol is —1 has been
updated to say “about 2". The rationale is that the test would be more efficient and more consistent with the
literature if it excluded discriminants with Jacobi symbol 0. Also, the probability that the Jacobi symbol is -1 is not
exactly 2 in every case, but is about . A note has been added referencing the literature [2].

The impact on existing implementations is negligible since the condition is highly unlikely to occur in the way the
test is employed in the standard (following several Miller-Rabin tests).

C.2.6 Boundary conditions in Shawe-Taylor’s algorithm

The range checking in Shawe-Taylor's algorithm (Clause 5.3.1) has been updated to check that the initial
candidate prime has the requested size. This range check has been moved to the top of the loop, at Step 5. Also,
the high end of range for x in Step 3 has been corrected to 2° — 1, not 2°. The rationale is that although unlikely in
practice, it is possible that the previous algorithm would output a prime longer than the requested size.

The example has been updated accordingly. (Three typos have also been corrected in the example: in Step 1, "<”

has been changed to “<”; in Step 2, “py” has been changed to “q”; and the number of iterations has been changed
to 40.)

The impact on existing implementations is negligible since the integer x is unlikely to be chosen so close to the
high end of the range.
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C.3 Editorial issues

C.3.1 Random bit generators

The phrase “(or bit)" has been added after “random number” in the last bullet of Clause 1, as ANS| X9.82 is a
(draft) standard for random bit generation.

C.3.2 Failure probability

A note has been added to Clause 1 giving rationale why the 27'% failure probability is considered appropriate
independent of the intended security level of the cryptosystem in which the prime is to be employed. (This
addresses the question of whether the failure probability needs to be revised to accommodate security levels
greater than 80 bits, which was the minimum security level in ASC X9 standards at the time ANSI X9.80 was
originally developed.)

C.3.3 Lucas-Lehmer vs. Lucas

The name “Lucas-Lehmer” has been changed to “Lucas” throughout the document, as is standard in the
literature. (“Lucas-Lehmer” is a different test for a special form of prime numbers, and is not used in the standard.)

C.3.4 Reference for combining Miller-Rabin and Lucas tests
The 1980 article by Pomerance, Selfridge and Wagstaff [11] is cited in Clause 5.1 in connection with the

suggestion of combining a Miller-Rabin test to the base 2 and a Lucas test, and has been been added to the
bibliography. This is in addition to the Baillie-Wagstaff reference already given [2].

C.3.5 Versions of Shawe-Taylor

The statement “It cannot be used to test a prime given by a second party” in 5.3.1 has been changed to “This
version of the algorithm cannot be used ...”, as a different version with additional properties is being considered in
another X9 standard.

C.3.6 Binary expansions

Although the definition of “m-bit number” in Clause 3.3 resolves any ambiguity by requiring that the leftmost bit is
1, additional text has been added to the binary expansions in Clauses A.1, A.4 and A.5 to clarify this point.

C.3.7 Modulo p division in Lucas sequence algorithm

A note has been added to Clause A.5 to clarify the notation “A/2 mod p". Division by 2 modulo p is implied, but the
notation could be misinterpreted as real-number division, followed by a modulo p operation.

C.3.8 Negative numbers in Lucas sequence example

A note has been added to Clause A.5 explaining that the values in the table are represented modulo p in the
range (—p/2, p/2). A “signed” representation is convenient for this algorithm since the discriminant D may be
negative.
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C.3.9 Added Interval

The interval [{\E )(2°"), (2°- 1)] has been added to provide support for legacy systems in the generation of
random primes with uniform distribution or using sequential search
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